
Package: fuseMLR (via r-universe)
December 18, 2024

Type Package

Title Fusing Machine Learning in R

Version 0.0.1

Maintainer Cesaire J. K. Fouodo <cesaire.kuetefouodo@uni-luebeck.de>

Description Recent technological advances have enable the simultaneous
collection of multi-omics data i.e., different types or
modalities of molecular data, presenting challenges for
integrative prediction modeling due to the heterogeneous,
high-dimensional nature and possible missing modalities of some
individuals. We introduce this package for late integrative
prediction modeling, enabling modality-specific variable
selection and prediction modeling, followed by the aggregation
of the modality-specific predictions to train a final
meta-model. This package facilitates conducting late
integration predictive modeling in a systematic, structured,
and reproducible way.

License GPL-3

Encoding UTF-8

Imports R6, stats, digest

Suggests testthat (>= 3.0.0), UpSetR (>= 1.4.0), caret, ranger,
glmnet, Boruta, knitr, rmarkdown, pROC, checkmate

Config/testthat/edition 3

Depends R (>= 3.6.0)

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.2

Collate 'Data.R' 'HashTable.R' 'Lrner.R' 'Model.R' 'PredictData.R'
'PredictLayer.R' 'PredictMetaLayer.R' 'Predicting.R' 'Target.R'
'TestData.R' 'TestLayer.R' 'TestMetaLayer.R' 'Testing.R'
'TrainData.R' 'TrainLayer.R' 'TrainMetaLayer.R' 'Training.R'
'VarSel.R' 'bestLayerLearner.R' 'cobra.R' 'createCobraPred.R'
'createDif.R' 'createLoss.R' 'createWeights.R' 'multi_omics.R'
'predict.bestLayerLearner.R' 'predict.cobra.R'

1

2 Contents

'weightedMeanLearner.R' 'predict.weightedMeanLearner.R'
'testingFunctions.R' 'trainingFunctions.R'

VignetteBuilder knitr, rmarkdown

BugReports https://github.com/imbs-hl/fuseMLR/issues

Repository https://imbs-hl.r-universe.dev

RemoteUrl https://github.com/imbs-hl/fusemlr

RemoteRef HEAD

RemoteSha 9869b24595785920ab0fae525e08928bbf2722b7

Contents
bestLayerLearner . 3
cobra . 4
createCobraPred . 5
createDif . 6
createLoss . 6
createTesting . 7
createTestLayer . 7
createTraining . 8
createTrainLayer . 9
createTrainMetaLayer . 11
createWeights . 14
Data . 14
extractData . 17
extractModel . 18
fusemlr . 18
HashTable . 20
Lrner . 22
Model . 25
multi_omics . 27
predict.bestLayerLearner . 28
predict.cobra . 29
predict.Training . 30
predict.weightedMeanLearner . 30
PredictData . 31
Predicting . 33
PredictLayer . 34
PredictMetaLayer . 36
summary.Testing . 38
summary.Training . 38
Target . 39
TestData . 41
Testing . 42
TestLayer . 44
TestMetaLayer . 46

https://github.com/imbs-hl/fuseMLR/issues

bestLayerLearner 3

TrainData . 48
Training . 50
TrainLayer . 56
TrainMetaLayer . 60
upsetplot . 64
VarSel . 64
varSelection . 67
weightedMeanLearner . 68

Index 70

bestLayerLearner The best layer-specific model is used as meta model.

Description

The meta learner is the best layer-specific learner. This function is intended to be (internally) used
as meta-learner in fuseMLR.

Usage

bestLayerLearner(x, y, perf = NULL)

Arguments

x data.frame
data.frame of predictors.

y vector
True target observations. Either binary or two level factor variable.

perf function
Function to compute layer-specific performance of learners. If NULL, the Brier
Score (classification) or a mean squared error (regression) is used by default as
performance measure. Otherwise, the performance function must accept two
parameters: observed (observed values) and predicted (predicted values).

Value

A model object of class weightedMeanLeaner.

Examples

set.seed(20240624L)
x = data.frame(x1 = runif(n = 50L, min = 0, max = 1))
y = sample(x = 0L:1L, size = 50L, replace = TRUE)
my_best_model = bestLayerLearner(x = x, y = y)

4 cobra

cobra Cobra Meta Learner

Description

The function cobra implements the COBRA (COmBined Regression Alternative), an aggregation
method for combining predictions from multiple individual learners. This method aims to tune key
parameters for achieving optimal predictions by averaging the target values of similar candidates
in the training dataset’s predictions. Only the training points that are sufficiently similar to the test
point (based on the proximity threshold epsilon) are used for prediction. If no suitable training
points are found, the function returns NA.

Usage

cobra(x, y, tune = "epsilon", k_folds = NULL, eps = NULL)

Arguments

x data.frame
A training data, where rows are observations and columns are predictions from
individual learners. Use NA for missing predictions.

y vector
A vector containing the training targets. This can be a binary or two-level factor
variable.

tune character
A character value specifying the tuning mode:

• "alpha_epsilon": Tunes both alpha (number of learners) and epsilon
(proximity threshold) via cross-validation.

• "epsilon": Tunes epsilon only via cross-validation.
• "user": No tuning; the user provides an optimal epsilon. #’ The default

value is epsilon.

k_folds integer
Number of folds for cross-validation when tune = "alpha_epsilon" or "epsilon".
Default is 10.

eps numeric
A numeric value for the proximity threshold, used only when tune = "user".
Defaults to 0.1.

Value

An object of class cobra containing the training data, target values, and chosen parameters.

References

Biau, G., Fischer, A., Guedj, B., & Malley, J. D. (2014). COBRA: A combined regression strategy.
The Journal of Multivariate Analysis 46:18-28

createCobraPred 5

Examples

Example usage
set.seed(123)
x_train <- data.frame(a = runif(10L), b = runif(10L))
y_train <- sample(0L:1L, size = 10L, replace = TRUE)

Train the model with epsilon optimization
cobra_model <- cobra(x = x_train, y = y_train, tune = "epsilon", k_folds = 2)

Make predictions on new data
set.seed(156)
x_new <- data.frame(a = runif(5L), b = runif(5L))
prediction <- predict(object = cobra_model, data = x_new)

createCobraPred Create COBRA Predictions

Description

The createCobraPred function calculates predictions by averaging the target values of all the
nearest candidates in the training dataset. Only the training points that are within the specified
proximity (eps) to the test point are used to determine the prediction. If no suitable training points
are found, the function returns NA as the prediction.

Usage

createCobraPred(
train,
test,
n_train,
n_test,
nlearners,
eps,
alpha,
train_target

)

Arguments

train A matrix representing the training data. Rows represent observations, and
columns contain predictions from individual learners for these observations. In
cases where a prediction is unavailable for a specific observation, NA is used.

test A matrix representing the test data. Rows represent observations, and columns
contain predictions from individual learners for these observations. In cases
where a prediction is unavailable for a specific observation, NA is used.

n_train An integer specifying the number of training observations.

6 createLoss

n_test An integer specifying the number of test observations.

nlearners An integer representing the number of learners.

eps A numeric value representing the threshold for proximity between two predic-
tions.

alpha A value that determines the optimal number of learners in the neighborhood
(only for alpha optimization).

train_target A vector containing the target values for the training dataset

createDif Create Difference

Description

The createDif function computes the difference between the maximum and minimum predictions
in a dataset.

Usage

createDif(x)

Arguments

x Predictions vector

createLoss Create Loss

Description

Create Loss

Usage

createLoss(pred, target)

Arguments

pred A vector of predictions.

target A vector of target values.

createTesting 7

createTesting createTesting

Description

Creates a Testing object.

Usage

createTesting(id, ind_col, verbose = TRUE)

Arguments

id character
Testing id.

ind_col character
Name of column of individuals IDs in testing data.frame.

verbose boolean
Warning messages will be displayed if set to TRUE.

Value

A Testing object.

createTestLayer createTestLayer

Description

Creates and stores a TestLayer on the Testing object passed as argument.

Usage

createTestLayer(testing, test_layer_id, test_data)

Arguments

testing Testing
Testing object where the created layer will be stored.

test_layer_id character
ID of the testing layer to be created.

test_data data.frame
Data modality to be stored in TestData.

Value

The updated Testing object (with the new layer) is returned.

8 createTraining

createTraining createTraining

Description

Creates a Training object. A training object is designed to encapsulate training layers and training
meta-layer. Functions createTrainLayer and createTrainMetaLayer are available to add the training
layer and the training meta-layer to a training object.

Usage

createTraining(
id,
target_df,
ind_col,
target,
problem_type = "classification",
verbose = TRUE

)

Arguments

id character
Training’s ID.

target_df data.frame
Observed target values. A data frame with two columns: individual IDs and
response variable values.

ind_col character
Name of column of individuals IDs.

target character
Name of the target variable.

problem_type character
Either "classification" or "regression".

verbose boolean
Warning and processing information (including those of cross-validation) will
be displayed if set to TRUE.

Value

The created Training object is returned.

See Also

createTrainLayer, createTrainMetaLayer and fusemlr.

createTrainLayer 9

createTrainLayer createTrainLayer

Description

Creates and stores a TrainLayer on the Training object passed as argument. The main components
of a training layer are training data modality, a variable selection methods, and a modality-specific
learner.

Usage

createTrainLayer(
training,
train_layer_id,
train_data,
varsel_package = NULL,
varsel_fct = NULL,
varsel_param = list(),
lrner_package = NULL,
lrn_fct,
param_train_list = list(),
param_pred_list = list(),
na_action = "na.rm",
x_varsel = "x",
y_varsel = "y",
x_lrn = "x",
y_lrn = "y",
object = "object",
data = "data",
extract_pred_fct = NULL,
extract_var_fct = NULL

)

Arguments

training Training
Training object for storing the created layer.

train_layer_id character
ID of the TrainLayer to be created.

train_data data.frame
Data modality to be stored on the layer.

varsel_package character
Package name containing the variable selection algorithm function. Defaults to
NULL if the function exists in the current working environment.

10 createTrainLayer

varsel_fct character
Variable selection function name. Default value is NULL for no variable selection.
If specified, the function must accept at least two parameters: x (predictors) and
y (response values), and return a vector of selected variables. Alternatively, use
the interface parameters x_varsel and y_varsel to map the original argument
names, and extract_var_fct to specify how to extract the vector of selected
variables. An exception is made for the Boruta function, which includes an
internal adjustment and requires no additional modifications.

varsel_param list
List of arguments to be passed to varsel_fct.

lrner_package character
Name of the package containing the learning algorithm function. Defaults to
NULL if the function is available in the current working environment.

lrn_fct character
Name of the learning function. The function must accept at least two parame-
ters: x (predictors) and y (response values) and return a model. Alternatively,
use the interface parameters x_lrn and y_lrn to map these names to the orig-
inal arguments in your function. The returned model must support the generic
predict function (with arguments object and data) to generate predictions
for new data. Predictions should be either a vector or a list containing a vector
named predictions with the predicted values.
If the arguments object and data have different names in your predict func-
tion, use the interface parameters below to map them to the original names. Ad-
ditionally, if predictions are stored as a matrix or data.frame (e.g., predicted
probabilities for dichotomous classification), only the second column (assumed
to be class 1 probabilities) will be used. If the predicted values are not returned
in one of the formats mentioned above, use the extract_pred_fct argument
below to specify how to extract the predicted values from the prediction object.

param_train_list

character
List of arguments to be passed to lrn_fct.

param_pred_list

character
List of arguments to be passed to predict when generating predictions.

na_action character
Handling of missing values in data during training. Set to "na.keep" to retain
missing values, or "na.rm" to remove instances with missing values.

x_varsel character
If the name of the argument used by the provided original variable selection
function to pass the matrix of independent variable is not x, use this argument to
specify how it is called in the provided function.

y_varsel character
If the name of the argument used by the provided original variable selection
function to pass the target variable is not y, use this argument to specify how it
is called in the provided function.

x_lrn character
If the name of the argument used by the provided original learning function to

createTrainMetaLayer 11

pass the matrix of independent variable is not x, use this argument to specify
how it is called in the provided function.

y_lrn character
If the name of the argument used by the provided original learning function to
pass the target variable is not y, use this argument to specify how it is called in
the provided function.

object character
The generic function predict uses the parameter object to pass a model. If the
corresponding argument is named differently in your predict function, specify
its name.

data character
The generic function predict uses a parameter data to pass new data. If the
corresponding argument is named differently in your predict function, specify
the name.

extract_pred_fct

character or function
If the predict function called for the model does not return a vector, use this
argument to specify a function (or the name of a function) to extract the vector
of predictions. The default value is NULL if predictions are returned as a vector.

extract_var_fct

character or function
If the variable selection function does not return a vector, use this argument to
specify a function (or the name of a function) to extract the vector of selected
variables.

Value

The updated Training object (with the new layer) is returned.

References

Fouodo C.J.K, Bleskina M. and Szymczak S. (2024). fuseMLR: An R package for integrative
prediction modeling of multi-omics data, paper submitted.

See Also

createTrainMetaLayer and fusemlr.

createTrainMetaLayer createTrainMetaLayer

Description

Creates and store a TrainMetaLayer on the Training object passed as argument. The meta-layer
encapsulates the meta-learner and the fold predictions (internally created) of the layer-specific base
models.

12 createTrainMetaLayer

Usage

createTrainMetaLayer(
training,
meta_layer_id,
lrner_package = NULL,
lrn_fct,
param_train_list = list(),
param_pred_list = list(),
na_action = "na.impute",
x_lrn = "x",
y_lrn = "y",
object = "object",
data = "data",
extract_pred_fct = NULL

)

Arguments

training Training
Training object for storing the created meta-layer.

meta_layer_id character
ID of the layer to be created.

lrner_package character
Package name containing the variable selection algorithm function. Defaults to
NULL if the function exists in the current working environment.

lrn_fct character
Name of the learning function. The function must accept at least two parame-
ters: x (predictors) and y (response values), and return a model. If not, use the
interface parameters x_lrn and y_lrn below to map these argument names to
the original arguments in your function. The returned model must support the
generic predict function (with arguments object and data) to make predic-
tions for new data, and the predictions should be a vector or a list containing a
vector called predictions with the predicted values. If the arguments object
and data are named differently in your predict function, use the interface pa-
rameters object and data below to specify the original names. See the details
below about meta-learners.

param_train_list

character
List of arguments to be passed to lrn_fct.

param_pred_list

list
List of arguments to be passed to predict when computing predictions.

na_action character
Handling of missing values in modality-specific predictions during training. Set
to "na.keep" to keep missing values, "na.rm" to remove individuals with miss-
ing values or "na.impute" to impute missing values in modality-specific pre-
dictions. Only median and mode based imputations are actually handled. With

createTrainMetaLayer 13

the "na.keep" option, ensure that the provided meta-learner can handle missing
values.

x_lrn character
If the argument name used by the provided original function to pass the matrix
of independent variables is not x, use this argument to specify the name used in
the function.

y_lrn character
If the argument name used by the provided original function to pass the target
variable is not y, use this argument to specify the name used in the function.

object character
The generic function predict uses a parameter object to pass a model. If the
corresponding argument is named differently in your predict function, specify
the name.

data character
The generic function predict uses a parameter data to pass new data. If the
corresponding argument is named differently in your predict function, specify
the name.

extract_pred_fct

character or function
If the predict function that is called for the model does not return a vector, then
use this argument to specify a (or a name of a) function that can be used to
extract vector of predictions. Defaults to NULL, if predictions are a vector.

Details

Internal meta-learners are available in the package.

The cobra meta-learner implements the COBRA (COmBined Regression Alternative), an aggrega-
tion method for combining predictions from multiple individual learners (Biau et al. 2014). This
method aims to tune key parameters for achieving optimal predictions by averaging the target val-
ues of similar candidates in the training dataset’s predictions. Only the training points that are suffi-
ciently similar to the test point (based on the proximity threshold epsilon) are used for prediction.
If no suitable training points are found, the function returns NA.

The weightedMeanLearner evaluates the prediction performance of modality-specific learners and
uses these estimates to weight the base models, aggregating their predictions accordingly.

The bestLayerLearner evaluates the prediction performance of modality-specific learners and re-
turns predictions made by the best learner as the meta-prediction.

Beyond the internal meta-learners, any other learning algorithm can be used.

Value

The updated Training object (with the new layer) is returned.

References

Fouodo C.J.K, Bleskina M. and Szymczak S. (2024). fuseMLR: An R package for integrative
prediction modeling of multi-omics data, paper submitted.
Biau, G., Fischer, A., Guedj, B., & Malley, J. D. (2014). COBRA: A combined regression strategy.
The Journal of Multivariate Analysis 46:18-28

14 Data

See Also

createTrainLayer, varSelection, and fusemlr.

createWeights Create weights for COBRA Predictions

Description

The createWeights function is used to calculate weights for predictions.

Usage

createWeights(train, test, n_train, n_test, nlearners, eps, alpha)

Arguments

train A matrix representing the training data. Rows represent observations, and
columns contain predictions from individual learners for these observations. In
cases where a prediction is unavailable for a specific observation, NA is used.

test A matrix representing the test data. Rows represent observations, and columns
contain predictions from individual learners for these observations. In cases
where a prediction is unavailable for a specific observation, NA is used.

n_train An integer specifying the number of training observations.

n_test An integer specifying the number of test observations.

nlearners An integer representing the number of learners.

eps A numeric value representing the threshold for proximity between two predic-
tions.

alpha A value that determines the optimal number of learners in the neighborhood
(only for alpha optimization).

Data Abstract class Data

Description

As abstract, a Data object cannot be stored on any layer. Instead, extended TrainData or TestData
objects can be stored on a layer.

Data 15

Methods

Public methods:
• Data$new()

• Data$print()

• Data$getIndSubset()

• Data$impute()

• Data$getVarSubset()

• Data$getSetDiff()

• Data$getDataFrame()

• Data$setDataFrame()

• Data$getCompleteData()

• Data$getId()

• Data$getData()

• Data$getIndCol()

• Data$clone()

Method new(): Constructor of class Data.

Usage:
Data$new(id, ind_col, data_frame)

Arguments:

id character
Object ID.

ind_col character
Column name containing individual IDs.

data_frame data.frame
data.frame containing data.

Method print(): Printer

Usage:
Data$print(...)

Arguments:

... any

Method getIndSubset(): Retrieve a data subset for a given variable name and values, a data
subset.

Usage:
Data$getIndSubset(var_name, value)

Arguments:

var_name character
Variable name of interest.

value vector
Values of interest.

16 Data

Returns: The data subset is returned.

Method impute(): Imputes missing values in modality-specific predictions. Only mode and
median based imputations are actually supported.

Usage:
Data$impute(impute_fct, impute_param, target_name)

Arguments:
impute_fct character

An imputation function to use instead of median or mode imputation. Not yet implemented!
impute_param list

target_name character
Name of the target variable. The list of parameters to call the imputation function.

Returns: A new object with the predicted values is returned.

Method getVarSubset(): Retrieve a subset of variables from data.

Usage:
Data$getVarSubset(var_name)

Arguments:
var_name character

Variable names of interest.

Returns: The data subset is returned.

Method getSetDiff(): For the given variable name, non existing values in the current dataset
are returned.

Usage:
Data$getSetDiff(var_name, value)

Arguments:
var_name character

Variable name of interest.
value vector

Values of interest.

Returns: The subset difference is returned.

Method getDataFrame(): Getter of the data.frame.

Usage:
Data$getDataFrame()

Returns: The data.frame of the current object is returned.

Method setDataFrame(): Set a new data.frame to the current object.

Usage:
Data$setDataFrame(data_frame)

Arguments:

extractData 17

data_frame data.frame

Returns: The current object is returned.

Method getCompleteData(): Getter of the complete dataset without missing values.

Usage:
Data$getCompleteData()

Returns: The complete dataset is returned.

Method getId(): Getter of the current object ID.

Usage:
Data$getId()

Returns: The current object ID is returned.

Method getData(): Getter of the current Data. This function is re-implemented by TrainData
and TestData.

Usage:
Data$getData()

Returns: Do not use on this class.

Method getIndCol(): Getter of the individual column variable.

Usage:
Data$getIndCol()

Method clone(): The objects of this class are cloneable with this method.

Usage:
Data$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

TrainData and TestData

extractData extractData

Description

Extracts data stored on each layers; base data and modality-specific predictions (for Training) are
extracted.

Usage

extractData(object)

18 fusemlr

Arguments

object Training or Testing
The object of interest.

Value

A list of data is returned.

extractModel extractModel

Description

Extracts models stored on each layers; base and meta models are extracted.

Usage

extractModel(training)

Arguments

training Training
The Training object of interest.

Value

A list of models is returned.

fusemlr fusemlr

Description

Trains the Training object passed as argument. A training object must contain the training layers
and a training meta-layer. A training layer encapsulates data modalities, a variable selection method
and a learner. Use the function createTraining to create a training object, createTrainLayer to add
training layers to the created training object, and createTrainMetaLayer to add a meta-layer with
the corresponding meta-learner to the training object. The function fusemlr is designed to train
all training layers and the meta-learner. After training the layer-specific base models and the meta-
model will be stored in the training object which can be used for predictions.

fusemlr 19

Usage

fusemlr(
training,
ind_subset = NULL,
use_var_sel = FALSE,
resampling_method = NULL,
resampling_arg = list(),
seed = NULL

)

Arguments

training Training
Training object for storing training layers.

ind_subset vector
ID subset to be used for training.

use_var_sel boolean
If TRUE and no variable selection has been performed for the provide training
object, then a variable selection will proceed the training. Otherwise, if variable
selection has been previously performed, the selected variables will be used for
training.

resampling_method

function
Function for internal validation. If not specify, the resampling function from
the package caret is used for a 10-folds cross-validation.

resampling_arg list
List of arguments to be passed to the function.

seed integer
Random seed used for resampling. Default is NULL, which generates the seed
from R.

Value

The current object is returned, with each learner trained on each layer.

References

Fouodo C.J.K, Bleskina M. and Szymczak S. (2024). fuseMLR: An R package for integrative
prediction modeling of multi-omics data, paper submitted.

See Also

createTrainLayer, createTrainMetaLayer, extractModel and extractData.

20 HashTable

HashTable Class HashTable

Description

Hashtable to contain object modalities. Storage objects like Training and TrainLayer are extensions
of this class.

Methods

Public methods:
• HashTable$new()

• HashTable$print()

• HashTable$add2HashTable()

• HashTable$getFromHashTable()

• HashTable$getKeyClass()

• HashTable$removeFromHashTable()

• HashTable$getId()

• HashTable$getHashTable()

• HashTable$checkClassExist()

Method new(): Initialize a default parameters list.

Usage:
HashTable$new(id)

Arguments:

id character
ID of the hash table. It must be unique.

Method print(): Printer

Usage:
HashTable$print(...)

Arguments:

... any

Method add2HashTable(): Function to add a key-value pair to the hash table.

Usage:
HashTable$add2HashTable(key, value, .class)

Arguments:

key character
The key to be added.

value object
Object to be added.

HashTable 21

.class character
Class of the object to be added.

Method getFromHashTable(): Getter of the object which the key passed as argument.

Usage:

HashTable$getFromHashTable(key)

Arguments:

key character
Key of the required object.

Method getKeyClass(): Getter of the data.frame that stores all key class pairs.

Usage:

HashTable$getKeyClass()

Returns: data.frame

Method removeFromHashTable(): Remove the object with the corresponding key from the
hashtable.

Usage:

HashTable$removeFromHashTable(key)

Arguments:

key Key of the object to be removed.

Method getId(): Getter of the current object ID.

Usage:

HashTable$getId()

Method getHashTable(): Getter of the current hashtable.

Usage:

HashTable$getHashTable()

Method checkClassExist(): Check whether object from a class has already been stored.

Usage:

HashTable$checkClassExist(.class)

Arguments:

.class character

Returns: Boolean value

22 Lrner

Lrner Lrner Class

Description

This class implements a learner. A Lrner object can only exist as a component of a TrainLayer or a
TrainMetaLayer object.

Methods

Public methods:
• Lrner$new()

• Lrner$print()

• Lrner$summary()

• Lrner$interface()

• Lrner$train()

• Lrner$getTrainLayer()

• Lrner$getNaRm()

• Lrner$getNaAction()

• Lrner$getId()

• Lrner$getPackage()

• Lrner$getIndSubset()

• Lrner$getVarSubset()

• Lrner$getParamPred()

• Lrner$getParamInterface()

• Lrner$getExtractPred()

Method new(): Initialize a default parameters list.

Usage:
Lrner$new(
id,
package = NULL,
lrn_fct,
param_train_list,
param_pred_list = list(),
train_layer,
na_action = "na.rm"

)

Arguments:

id character
Learner ID.

package character
Package that implements the learn function. If NULL, the

Lrner 23

lrn_fct character
learn function is called from the current environment.

param_train_list list
List of parameter for training.

param_pred_list list
List of parameter for testing. Learn parameters.

train_layer TrainLayer
Layer on which the learner is stored.

na_action character
Handling of missing values. Set to "na.keep" to keep missing values, "na.rm" to remove
individuals with missing values or "na.impute" (only applicable on meta-data) to impute
missing values in meta-data. Only median and mode based imputations are actually han-
dled. With the "na.keep" option, ensure that the provided learner can handle missing values.

Method print(): Printer

Usage:
Lrner$print(...)

Arguments:
... any

Method summary(): Printer

Usage:
Lrner$summary(...)

Arguments:
... any

Method interface(): Learner and prediction parameter interface. Use this function to provide
how the following parameters are named in the learning function (lrn_fct) you provided when
creating the learner, or in the predicting function.

Usage:
Lrner$interface(
x = "x",
y = "y",
object = "object",
data = "data",
extract_pred_fct = NULL

)

Arguments:
x character

Name of the argument to pass the matrix of independent variables in the original learning
function.

y character
Name of the argument to pass the response variable in the original learning function.

object character
Name of the argument to pass the model in the original predicting function.

24 Lrner

data character
Name of the argument to pass new data in the original predicting function.

extract_pred_fct character or function
If the predict function that is called for the model does not return a vector, then use this argu-
ment to specify a (or a name of a) function that can be used to extract vector of predictions.
Default value is NULL, if predictions are in a vector.

Method train(): Tains the current learner (from class Lrner) on the current training data (from
class TrainData).

Usage:
Lrner$train(ind_subset = NULL, use_var_sel = FALSE, verbose = TRUE)

Arguments:

ind_subset vector
Individual ID subset on which the training will be performed.

use_var_sel boolean
If TRUE, variable selection is performed before training.

verbose boolean
Warning messages will be displayed if set to TRUE.

Returns: The resulting model, from class Model, is returned.

Method getTrainLayer(): The current layer is returned.

Usage:
Lrner$getTrainLayer()

Returns: TrainLayer object.

Method getNaRm(): The current layer is returned.

Usage:
Lrner$getNaRm()

Method getNaAction(): The current layer is returned.

Usage:
Lrner$getNaAction()

Method getId(): Getter of the current learner ID.

Usage:
Lrner$getId()

Returns: The current learner ID.

Method getPackage(): Getter of the learner package implementing the learn function.

Usage:
Lrner$getPackage()

Returns: The name of the package implementing the learn function.

Method getIndSubset(): Getter of the learner package implementing the learn function.

Model 25

Usage:
Lrner$getIndSubset()

Returns: The name of the package implementing the learn function.

Method getVarSubset(): Getter of the variable subset used for training.

Usage:
Lrner$getVarSubset()

Returns: The list of variables used for training is returned.

Method getParamPred(): Getter predicting parameter list.

Usage:
Lrner$getParamPred()

Returns: The list of predicting parameters.

Method getParamInterface(): The current parameter interface is returned.

Usage:
Lrner$getParamInterface()

Returns: A data.frame of interface.

Method getExtractPred(): The function to extract predicted values is returned.

Usage:
Lrner$getExtractPred()

Returns: A data.frame of interface.

Model Model Class

Description

This class implements a model. A Model object can only exist as element of a TrainLayer or a
TrainMetaLayer object. A Model object is automatically created by fitting a learner on a training
data.

A Model object can compute predictions for a TestData object. See the predict function below.

Methods

Public methods:
• Model$new()

• Model$print()

• Model$summary()

• Model$getBaseModel()

• Model$getTrainData()

• Model$getTrainLabel()

26 Model

• Model$getLrner()

• Model$setId()

• Model$predict()

• Model$clone()

Method new(): Constructor of Model class.

Usage:
Model$new(lrner, train_data, base_model, train_layer)

Arguments:

lrner Lrner
The learner.

train_data TrainData(1)
Training data.

base_model object
Base model as returned by the original learn function.

train_layer TrainLayer
The current training layer on which the model is stored.

Returns: An object is returned.

Method print(): Printer

Usage:
Model$print(...)

Arguments:

... any

Method summary(): Summary

Usage:
Model$summary(...)

Arguments:

... any

Method getBaseModel(): Getter of the base model

Usage:
Model$getBaseModel()

Method getTrainData(): Getter of the traning data

Usage:
Model$getTrainData()

Method getTrainLabel(): Getter of the individual ID column in the training data.

Usage:
Model$getTrainLabel()

Arguments:

multi_omics 27

... any

Method getLrner(): Getter of the learner use to fit the model.

Usage:
Model$getLrner()

Method setId(): Setter of the model ID.

Usage:
Model$setId(id)

Arguments:
id character

ID value

Method predict(): Predict target values for the new data (from class TestData) taken as into.

Usage:
Model$predict(testing_data, use_var_sel, ind_subset = NULL)

Arguments:
testing_data TestData

An object from class TestData.
use_var_sel boolean

If TRUE, selected variables available at each layer are used.
ind_subset vector

Subset of individual IDs to be predicted.
... Further parameters to be passed to the basic predict function.

Returns: The predicted object are returned. The predicted object must be either a vector or a
list containing a field predictions with predictions.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Model$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

multi_omics Simulated multiomics data for 70 training participants and 23 testing
participants, each with an effect size of 20 on each layer. Each layer
includes 50 participants for training and 20 for testing. Participants
do not perfectly overlap across layers. The simulation is based on the
R package interSIM.

Description

The dataset is a list containing training and testing data, called training and testing respectively.
Each data is a list containing the following multi_omics at each layer.

28 predict.bestLayerLearner

Usage

data(multi_omics)

Format

A list with training and testing data contaning methylation, gene expressions and protein expres-
sions data.

Details

• methylation: A data.frame containing the simulated methylation dataset.

• genexpr : A data.frame containing the gene expression dataset.

• proteinexpr: A data.frame containing the protein expression dataset.

• target: A data.frame with two columns, containing patient IDs and values of target vari-
able.

predict.bestLayerLearner

Best specific Learner prediction.

Description

Predict function for models from class bestLayerLearner.

Usage

S3 method for class 'bestLayerLearner'
predict(object, data, ...)

Arguments

object bestLayerLearner
An object from class bestLayerLearner

data data.frame
New data to predicted.

... any
Further arguments passed to or from other methods.

Value

Predicted target values are returned.

predict.cobra 29

Examples

set.seed(20240625)
x = data.frame(x1 = runif(n = 50L, min = 0, max = 1))
y <- sample(x = 0:1, size = 50L, replace = TRUE)
my_model <- bestLayerLearner(x = x, y = y)
x_new <- data.frame(x1 = rnorm(10L))
my_predictions <- predict(object = my_model, data = x_new)

predict.cobra Predict Using COBRA object

Description

#’ The predict.cobra function makes predictions on new data using a trained COBRA object.

Usage

S3 method for class 'cobra'
predict(object, data, ...)

Arguments

object An object of class "cobra" created by the cobra function.

data A data.frame of new data, where rows are observations and columns are pre-
dictions from individual learners. Use NA for missing predictions.

... Additional arguments (currently not used).

Value

A vector of predictions for the new data.

Examples

Example usage
set.seed(123)
x_train <- data.frame(a = rnorm(10L), b = rnorm(10L))
y_train <- sample(0L:1L, size = 10L, replace = TRUE)

Train the model with epsilon optimization
cobra_model <- cobra(x = x_train, y = y_train, tune = "epsilon")

Make predictions on new data
set.seed(156)
x_new <- data.frame(a = rnorm(5L), b = rnorm(5L))
prediction <- predict(object = cobra_model, data = x_new)

30 predict.weightedMeanLearner

predict.Training predict.Training

Description

Computes predictions for the Testing object passed as argument.

Usage

S3 method for class 'Training'
predict(object, testing, ind_subset = NULL, ...)

Arguments

object Training
A trained Training object to be used to compute predictions.

testing Testing
A new testing object to be predicted.

ind_subset vector
Vector of IDs to be predicted.

... any
Further arguments passed to or from other methods.

Value

The final predicted object. All layers and the meta layer are predicted.

predict.weightedMeanLearner

Weighted mean prediction.

Description

Predict function for models from class weightedMeanLearner.

Usage

S3 method for class 'weightedMeanLearner'
predict(object, data, na_rm = FALSE, ...)

PredictData 31

Arguments

object weightedMeanLearner(1)
An object from class weightedMeanLearner

data data.frame
data.frame to be predicted.

na_rm boolean
Removes NAs when TRUE.

... any
Further arguments.

Value

Predicted target values are returned.

Examples

set.seed(20240625)
x <- data.frame(x1 = rnorm(50L))
y <- sample(x = 0:1, size = 50L, replace = TRUE)
my_model <- weightedMeanLearner(x = x, y = y)
x_new <- data.frame(x1 = rnorm(10L))
my_predictions <- predict(object = my_model, data = x_new)

PredictData PredictData Class

Description

This class implements PredictData object to be predicted. A PredictData object can only exist as a
component of a PredictLayer or a PredictMetaLayer object.

Super class

fuseMLR::Data -> PredictData

Methods

Public methods:
• PredictData$new()

• PredictData$print()

• PredictData$getPredictData()

• PredictData$getPredictLayer()

• PredictData$setPredictLayer()

• PredictData$clone()

32 PredictData

Method new(): Initialize a new object from the current class.
Usage:
PredictData$new(id, ind_col, data_frame)

Arguments:
id character

Object ID.
ind_col character

Column name containing individual IDs.
data_frame data.frame

data.frame containing data.

Method print(): Printer
Usage:
PredictData$print(...)

Arguments:
... any

Method getPredictData(): Getter of the current predicted data.frame wihtout individual ID
variable.

Usage:
PredictData$getPredictData()

Returns: The data.frame without individual ID nor target variables is returned.

Method getPredictLayer(): Getter of the current layer.
Usage:
PredictData$getPredictLayer()

Returns: The layer (from class PredictLayer) on which the current train data are stored is
returned.

Method setPredictLayer(): Assigns a predicted layer to the predicted data.
Usage:
PredictData$setPredictLayer(predict_layer)

Arguments:
predict_layer PredictLayer(1)

Returns: The current object

Method clone(): The objects of this class are cloneable with this method.
Usage:
PredictData$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

TrainData, TestData

Predicting 33

Predicting Predicting Class

Description

This class is designed for predictions.

The Predicting is structured as followed:

• PredictLayer: Exists for each modality.

– PredictData: Related class for modality-specific predictions.

• PredictMetaLayer: Related class for meta predictions.

– PredictData: Specific to the meta layer, it is set up internally after cross-validation.

Use the function train for training and predict for predicting.

TODO: Do not export me.

Super class

fuseMLR::HashTable -> Predicting

Methods

Public methods:
• Predicting$new()

• Predicting$print()

• Predicting$createMetaTestData()

• Predicting$getIndIDs()

• Predicting$getPredictMetaLayer()

• Predicting$getIndCol()

Method new(): constructor

Usage:
Predicting$new(id, ind_col)

Arguments:
id character

Predicting id.
ind_col character Name of column of individuals IDS

Method print(): Printer

Usage:
Predicting$print(...)

Arguments:
... any

34 PredictLayer

Method createMetaTestData(): Creates a new modality-specific predictions dataset based on
layer predictions.

Usage:
Predicting$createMetaTestData(meta_layer_id)

Arguments:

meta_layer_id (character(1))
ID of the meta layer where the testing meta data will be stored.

Returns: A TestData is returned.

Method getIndIDs(): Gather individual IDs from all layer.

Usage:
Predicting$getIndIDs()

Returns: A data.frame containing individuals IDs.

Method getPredictMetaLayer(): Getter of the meta layer.

Usage:
Predicting$getPredictMetaLayer()

Returns: Object from class PredictMetaLayer

Method getIndCol(): Getter of the individual column name.

Usage:
Predicting$getIndCol()

See Also

TrainLayer

PredictLayer PredictLayer Class

Description

This class implements a layer. A PredictLayer object can only exist as a component of a Predicting
object.

A predicted layer can only contain PredictData.

Super class

fuseMLR::HashTable -> PredictLayer

PredictLayer 35

Methods

Public methods:
• PredictLayer$new()

• PredictLayer$print()

• PredictLayer$getPredicting()

• PredictLayer$getIndIDs()

• PredictLayer$getPredictData()

• PredictLayer$setPredicting()

• PredictLayer$summary()

Method new(): constructor

Usage:
PredictLayer$new(id)

Arguments:

id character
The layer ID.

Method print(): Printer

Usage:
PredictLayer$print(...)

Arguments:

... any

Method getPredicting(): Getter of the current predicting object

Usage:
PredictLayer$getPredicting()

Returns: The current predicting object is returned.

Method getIndIDs(): Getter of IDS from the current layer.

Usage:
PredictLayer$getIndIDs()

Returns: A data.frame containing individuals IDs values.

Method getPredictData(): Getter of the predicted data stored on the current layer.

Usage:
PredictLayer$getPredictData()

Returns: The stored PredictData object is returned.

Method setPredicting(): Assigns a predicting object to the predicted layer.

Usage:
PredictLayer$setPredicting(predicting)

Arguments:

36 PredictMetaLayer

predicting Predicting

Returns: The current object

Method summary(): Generate summary.

Usage:
PredictLayer$summary()

See Also

Training, Lrner, TrainData, TestData and Model

PredictMetaLayer PredictMetaLayer Class

Description

This class implement a predicted meta layer. A PredictMetaLayer can only exist as unique element
of a Training object.

A predicted meta layer can only contain a PredictData object.

Super class

fuseMLR::HashTable -> PredictMetaLayer

Methods

Public methods:

• PredictMetaLayer$new()

• PredictMetaLayer$print()

• PredictMetaLayer$getPredicting()

• PredictMetaLayer$getIndIDs()

• PredictMetaLayer$getPredictData()

• PredictMetaLayer$openAccess()

• PredictMetaLayer$closeAccess()

• PredictMetaLayer$getAccess()

Method new(): constructor

Usage:
PredictMetaLayer$new(id, predicting)

Arguments:

id character

PredictMetaLayer 37

predicting Predicting

Method print(): Printer

Usage:

PredictMetaLayer$print(...)

Arguments:

... any

Method getPredicting(): Getter of the current predicting object

Usage:

PredictMetaLayer$getPredicting()

Returns: The current predicting object is returned.

Method getIndIDs(): Getter of IDS from the current layer.

Usage:

PredictMetaLayer$getIndIDs()

Returns: A data.frame containing individuals IDs values.

Method getPredictData(): Getter of the predicted data.

Usage:

PredictMetaLayer$getPredictData()

Returns: The stored PredictData object is returned.

Method openAccess(): Open access to the meta layer. A meta learner is only modifiable if the
access is opened.

Usage:

PredictMetaLayer$openAccess()

Method closeAccess(): Close access to the meta layer to avoid accidental modification.

Usage:

PredictMetaLayer$closeAccess()

Method getAccess(): Getter of the current access to the meta layer.

Usage:

PredictMetaLayer$getAccess()

38 summary.Training

summary.Testing Testing object Summaries

Description

Summaries a fuseMLR Testing object.

Usage

S3 method for class 'Testing'
summary(object, ...)

Arguments

object Testing
The Testing object of interest.

... any
Further arguments.

summary.Training Training object Summaries

Description

Summaries a fuseMLR Training object.

Usage

S3 method for class 'Training'
summary(object, ...)

Arguments

object Training
The Training object of interest.

... any
Further arguments.

Target 39

Target Target Class

Description

This class implements the target object. A Target object can only exist as a component of a Training
object.

Super class

fuseMLR::Data -> Target

Methods

Public methods:
• Target$new()

• Target$print()

• Target$summary()

• Target$getData()

• Target$getTargetValues()

• Target$getTargetName()

• Target$getTraining()

• Target$setData()

• Target$clone()

Method new(): Initialize a new object from the current class.

Usage:
Target$new(id, data_frame, training)

Arguments:

id character
The Object ID.

data_frame data.frame
data.frame containing data.

training Training
Training where to store the current object.

Method print(): Printer

Usage:
Target$print(...)

Arguments:

... any

Method summary(): Summary

40 Target

Usage:
Target$summary(...)

Arguments:

... any

Method getData(): Getter of the current data.frame wihtout individual ID nor target variables.

Usage:
Target$getData()

Returns: The data.frame without individual ID nor target variables is returned.

Method getTargetValues(): Getter of target values stored on the current training layer.

Usage:
Target$getTargetValues()

Returns: The observed target values stored on the current training layer are returned.

Method getTargetName(): Getter of the target variable name.

Usage:
Target$getTargetName()

Method getTraining(): Getter of the current training object.

Usage:
Target$getTraining()

Returns: The training layer (from class Training) on which the current train data are stored is
returned.

Method setData(): Getter of the current data.frame wihtout individual ID nor target variables.

Usage:
Target$setData(data_frame)

Arguments:

data_frame data.frame
data.frame to be set.
Title

Method clone(): The objects of this class are cloneable with this method.

Usage:
Target$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

TrainLayer, Lrner, Model, TestData

TestData 41

TestData TestData Class

Description

This class implements TestData object to be predicted. A TestData object can only exist as a com-
ponent of a TestLayer or a TestMetaLayer object.

Super class

fuseMLR::Data -> TestData

Methods

Public methods:
• TestData$new()

• TestData$print()

• TestData$getData()

• TestData$getTestLayer()

• TestData$clone()

Method new(): Initialize a new object from the current class.

Usage:
TestData$new(id, data_frame, new_layer)

Arguments:

id character
Object ID.

data_frame data.frame
data.frame containing data.

new_layer TestLayer
Layer where to store the current object.

ind_col character
Column name containing individual IDs.

Method print(): Printer

Usage:
TestData$print(...)

Arguments:

... any

Method getData(): Getter of the current data.frame wihtout individual ID variable.

Usage:
TestData$getData()

42 Testing

Returns: The data.frame without individual ID nor target variables is returned.

Method getTestLayer(): Getter of the current layer.

Usage:
TestData$getTestLayer()

Returns: The layer (from class TestLayer) on which the current train data are stored is returned.

Method clone(): The objects of this class are cloneable with this method.

Usage:
TestData$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

TrainData

Testing Testing Class

Description

This is a primary classes of fuseMLR. An object from this class is designed to contain multiple
layers, but only one new meta layer.

A Testing object is structured as followed:

• TestLayer

• TestMetaLayer

Super class

fuseMLR::HashTable -> Testing

Methods

Public methods:
• Testing$new()

• Testing$print()

• Testing$getIndIDs()

• Testing$getTestMetaLayer()

• Testing$getIndCol()

• Testing$getVerbose()

• Testing$getData()

• Testing$upset()

Testing 43

• Testing$summary()

Method new(): constructor

Usage:
Testing$new(id, ind_col, verbose = TRUE)

Arguments:
id character

Testing id.
ind_col character Name of column of individuals IDS in testing data.frame.
verbose boolean

Warning messages will be displayed if set to TRUE.

Method print(): Printer

Usage:
Testing$print(...)

Arguments:
... any

Method getIndIDs(): Gather individual IDs from all layer.

Usage:
Testing$getIndIDs()

Returns: A data.frame containing individuals IDs.

Method getTestMetaLayer(): Getter of the meta layer.

Usage:
Testing$getTestMetaLayer()

Returns: Object from class TestMetaLayer

Method getIndCol(): Getter of the individual column name.

Usage:
Testing$getIndCol()

Method getVerbose(): Getter of the verbose setting.

Usage:
Testing$getVerbose()

Method getData(): Retrieve modality-specific prediction data.

Usage:
Testing$getData()

Returns: A list containing all (base and meta) models.

Method upset(): UpSet plot to show an overview of the overlap of individuals across various
layers.

Usage:

44 TestLayer

Testing$upset(...)

Arguments:

... any
Further parameters to be passed to the the upset function from package UpSetR.

Method summary(): Generate testing summary

Usage:
Testing$summary()

See Also

TrainLayer

TestLayer TestLayer Class

Description

This class implements a layer. A TestLayer object can only exist as a component of a Predicting
object.

A predicted layer can only contain TestData.

Super class

fuseMLR::HashTable -> TestLayer

Methods

Public methods:
• TestLayer$new()

• TestLayer$print()

• TestLayer$getTesting()

• TestLayer$getIndIDs()

• TestLayer$getTestData()

• TestLayer$checkTestDataExist()

• TestLayer$summary()

Method new(): constructor

Usage:
TestLayer$new(id, testing)

Arguments:

id character
Testing layer id.

TestLayer 45

testing Testing

Method print(): Printer

Usage:

TestLayer$print(...)

Arguments:

... any

Method getTesting(): Getter of the current Testing object.

Usage:

TestLayer$getTesting()

Returns: The current Testing object is returned.

Method getIndIDs(): Getter of IDS from the current layer.

Usage:

TestLayer$getIndIDs()

Returns: A data.frame containing individuals IDs values.

Method getTestData(): Getter of the predicted data stored on the current layer.

Usage:

TestLayer$getTestData()

Returns: The stored TestData object is returned.

Method checkTestDataExist(): Check whether a new data has been already stored.

Usage:

TestLayer$checkTestDataExist()

Returns: Boolean value

Method summary(): Generate summary.

Usage:

TestLayer$summary()

See Also

Training, Lrner, TrainData, TestData and Model

46 TestMetaLayer

TestMetaLayer TestMetaLayer Class

Description

This class implement a predicted meta layer. A TestMetaLayer can only exist as unique element of
a Training object.

A predicted meta layer can only contain a TestData object.

Super class

fuseMLR::HashTable -> TestMetaLayer

Methods

Public methods:
• TestMetaLayer$new()

• TestMetaLayer$print()

• TestMetaLayer$getTesting()

• TestMetaLayer$getTestData()

• TestMetaLayer$openAccess()

• TestMetaLayer$closeAccess()

• TestMetaLayer$getAccess()

• TestMetaLayer$setTestData()

• TestMetaLayer$checkTestDataExist()

Method new(): constructor

Usage:
TestMetaLayer$new(id, testing)

Arguments:
id character

Testing meta-layer id.
testing Testing

Method print(): Printer

Usage:
TestMetaLayer$print(...)

Arguments:
... any

Method getTesting(): Getter of the current testing object.

Usage:

TestMetaLayer 47

TestMetaLayer$getTesting()

Returns: The current testing object is returned.

Method getTestData(): Getter of the training dataset stored on the current layer.

Usage:

TestMetaLayer$getTestData()

Returns: The stored TestData object is returned.

Method openAccess(): Open access to the meta layer. A meta learner is only modifiable if the
access is opened.

Usage:

TestMetaLayer$openAccess()

Method closeAccess(): Close access to the meta layer to avoid accidental modification.

Usage:

TestMetaLayer$closeAccess()

Method getAccess(): Getter of the current access to the meta layer.

Usage:

TestMetaLayer$getAccess()

Method setTestData(): Create and set an TestData object to the current new meta learner.

Usage:

TestMetaLayer$setTestData(id, ind_col, data_frame)

Arguments:

id character(1)
ID of the TestData object to be instanciated.

ind_col character(1)
Name of individual column IDs.

data_frame data.frame(1)
data.frame of layer specific predictions.

Method checkTestDataExist(): Check whether a new data has been already stored.

Usage:

TestMetaLayer$checkTestDataExist()

Returns: Boolean value

48 TrainData

TrainData TrainData Class

Description

This class implements the training data. A TrainData object can only exist as a component of a
TrainLayer or a TrainMetaLayer object.

Super class

fuseMLR::Data -> TrainData

Methods

Public methods:
• TrainData$new()

• TrainData$print()

• TrainData$summary()

• TrainData$getData()

• TrainData$getTargetValues()

• TrainData$getTargetName()

• TrainData$getTrainLayer()

• TrainData$getTestLayer()

• TrainData$setDataFrame()

• TrainData$clone()

Method new(): Initialize a new object from the current class.

Usage:
TrainData$new(id, data_frame, train_layer)

Arguments:
id character

The Object ID.
data_frame data.frame

data.frame containing data.
train_layer TrainLayer

Training layer where to store the current object.

Method print(): Printer

Usage:
TrainData$print(...)

Arguments:
... any

Method summary(): Summary

TrainData 49

Usage:
TrainData$summary(...)

Arguments:
... any

Method getData(): Getter of the current data.frame wihtout individual ID nor target variables.
Usage:
TrainData$getData()

Returns: The data.frame without individual ID nor target variables is returned.

Method getTargetValues(): Getter of target values stored on the current training layer.
Usage:
TrainData$getTargetValues()

Returns: The observed target values stored on the current training layer are returned.

Method getTargetName(): Getter of the target variable name.
Usage:
TrainData$getTargetName()

Method getTrainLayer(): Getter of the current training layer.
Usage:
TrainData$getTrainLayer()

Returns: The training layer (from class TrainLayer) on which the current train data are stored
is returned.

Method getTestLayer(): Getter of the current layer.
Usage:
TrainData$getTestLayer()

Returns: The layer (from class TestLayer) on which the current train data are stored is returned.

Method setDataFrame(): Set a new data.frame to the current object.
Usage:
TrainData$setDataFrame(data_frame)

Arguments:
data_frame data.frame

Returns: The current object is returned.

Method clone(): The objects of this class are cloneable with this method.
Usage:
TrainData$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

TrainLayer, Lrner, Model, TestData

50 Training

Training Training Class

Description

This is a primary classes of fuseMLR. An object from this class is designed to contain multiple
training layers, but only one meta training layer.

The Training class is structured as followed:

• TrainLayer: Specific layer containing:

– Lrner: Specific learner. This must be set by the user.
– TrainData: Specific training dataset. This must be set up by the user.
– Model: Specific model. This is set up by training the learner on the training data.

• TrainMetaLayer: Basically a TrainLayer, but with some specific properties.

– Lrner: This is the meta learner, it must be set up by the user.
– TrainData: Specific modality-specific prediction data. This is set up internally after cross-

validation.
– Model: Specific meta model. This is set up by training the learner on the training data.

Use the function train for training and predict for predicting.

Super class

fuseMLR::HashTable -> Training

Methods

Public methods:
• Training$new()

• Training$print()

• Training$trainLayer()

• Training$predictLayer()

• Training$createMetaTrainData()

• Training$train()

• Training$predict()

• Training$varSelection()

• Training$getTargetValues()

• Training$getIndIDs()

• Training$getLayer()

• Training$getTrainMetaLayer()

• Training$getModel()

• Training$getData()

• Training$removeLayer()

Training 51

• Training$removeTrainMetaLayer()

• Training$getIndCol()

• Training$getTarget()

• Training$getVerbose()

• Training$getUseVarSel()

• Training$getVarSelDone()

• Training$increaseNbTrainedLayer()

• Training$checkTargetExist()

• Training$getTargetObj()

• Training$getProblemTyp()

• Training$setImpute()

• Training$testOverlap()

• Training$upset()

• Training$summary()

Method new(): constructor

Usage:
Training$new(
id,
ind_col,
target,
target_df,
problem_type = "classification",
verbose = TRUE

)

Arguments:
id character

ind_col character
Name of column of individuals IDS.

target character
Name of the target variable.

target_df data.frame
Data frame with two columns: individual IDs and response variable values.

problem_type character
Either "classification" or "regression".

verbose boolean
Warning messages will be displayed if set to TRUE.

Method print(): Printer

Usage:
Training$print(...)

Arguments:
... any

52 Training

Method trainLayer(): Train each layer of the current Training.

Usage:
Training$trainLayer(ind_subset = NULL, use_var_sel = FALSE, verbose = TRUE)

Arguments:
ind_subset character

Subset of individuals IDs to be used for training.
use_var_sel boolean

If TRUE, selected variables available at each layer are used.
verbose boolean

Warning messages will be displayed if set to TRUE.

Returns: Returns the object itself, with a model for each layer.

Method predictLayer(): Predicts values given new data.

Usage:
Training$predictLayer(testing, ind_subset = NULL)

Arguments:
testing TestData

Object of class TestData.
ind_subset vector

Subset of individuals IDs to be used for training.

Returns: A new Training with predicted values for each layer.

Method createMetaTrainData(): Creates a meta training dataset and assigns it to the meta
layer.

Usage:
Training$createMetaTrainData(
resampling_method,
resampling_arg,
use_var_sel,
impute = TRUE

)

Arguments:
resampling_method function

Function for internal validation.
resampling_arg list

List of arguments to be passed to the function.
use_var_sel boolean

If TRUE, selected variables available at each layer are used.
impute boolean

If TRUE, mode or median based imputation is performed on the modality-specific predic-
tions.

Returns: The current object is returned, with a meta training dataset assigned to the meta layer.

Method train(): Trains the current object. All leaners and the meta learner are trained.

Training 53

Usage:
Training$train(
ind_subset = NULL,
use_var_sel = FALSE,
resampling_method = NULL,
resampling_arg = list(),
seed = NULL

)

Arguments:

ind_subset vector
ID subset to be used for training.

use_var_sel boolean
If TRUE, variable selection is performed before training.

resampling_method function
Function for internal validation. If not specify, the resampling function from the package
caret is used for a 10-folds cross-validation.

resampling_arg list
List of arguments to be passed to the function.

seed integer
Random seed. Default is NULL, which generates the seed from R.

Returns: The current object is returned, with each learner trained on each layer.

Method predict(): Compute predictions for a testing object.

Usage:
Training$predict(testing, ind_subset = NULL)

Arguments:

testing Testing
A new testing object to be predicted.

ind_subset vector
Vector of IDs to be predicted.

Returns: The predicted object. All layers and the meta layer are predicted. This is the final
predicted object.

Method varSelection(): Variable selection on the current training object.

Usage:
Training$varSelection(ind_subset = NULL, verbose = TRUE)

Arguments:

ind_subset vector
ID subset of individuals to be used for variable selection.

verbose boolean
Warning messages will be displayed if set to TRUE.

Returns: The current layer is returned with the resulting model.

Method getTargetValues(): Gather target values from all layer.

54 Training

Usage:
Training$getTargetValues()

Returns: A data.frame containing individuals IDs and corresponding target values.

Method getIndIDs(): Gather individual IDs from all layer.

Usage:
Training$getIndIDs()

Returns: A data.frame containing individuals IDs.

Method getLayer(): Get a layer of a given ID.

Usage:
Training$getLayer(id)

Arguments:
id character

The ID of the layer to be returned.

Returns: The TrainLayer object is returned for the given ID.

Method getTrainMetaLayer(): Getter of the meta layer.

Usage:
Training$getTrainMetaLayer()

Returns: Object from class TrainMetaLayer

Method getModel(): Retrieve models from all layer.

Usage:
Training$getModel()

Returns: A list containing all (base and meta) models.

Method getData(): Retrieve modality-specific predictions.

Usage:
Training$getData()

Returns: A list containing all (base and meta) models.

Method removeLayer(): Remove a layer of a given ID.

Usage:
Training$removeLayer(id)

Arguments:
id character

The ID of the layer to be removed.

Returns: The TrainLayer object is returned for the given ID.

Method removeTrainMetaLayer(): Remove the meta layer from the current Training object.

Usage:
Training$removeTrainMetaLayer()

Training 55

Method getIndCol(): Getter of the individual column name.

Usage:
Training$getIndCol()

Method getTarget(): Getter of the target variable name.

Usage:
Training$getTarget()

Method getVerbose(): Getter of the verbose setting.

Usage:
Training$getVerbose()

Method getUseVarSel(): Getter of the use_var_sel field.

Usage:
Training$getUseVarSel()

Method getVarSelDone(): Getter of the use_var_sel field.

Usage:
Training$getVarSelDone()

Method increaseNbTrainedLayer(): Increase the number of trained layer.

Usage:
Training$increaseNbTrainedLayer()

Method checkTargetExist(): Check whether a target object has already been stored.

Usage:
Training$checkTargetExist()

Returns: Boolean value

Method getTargetObj(): Getter of the target object.

Usage:
Training$getTargetObj()

Method getProblemTyp(): Getter of the problem type.

Usage:
Training$getProblemTyp()

Method setImpute(): Set imputation action na.action.

Usage:
Training$setImpute(impute)

Arguments:
impute character

How to handle missing values.

Method testOverlap(): Test that individuals overlap over layers. At least five individuals must
overlapped.

56 TrainLayer

Usage:
Training$testOverlap()

Method upset(): UpSet plot to show an overview of the overlap of individuals across various
layers.

Usage:
Training$upset(...)

Arguments:

... any
Further parameters to be passed to the upset function from package UpSetR.

Method summary(): Generate training summary

Usage:
Training$summary()

See Also

TrainLayer

Testing and Predicting

TrainLayer TrainLayer Class

Description

This class implements a traning layer. A TrainLayer object can only exist as a component of a
Training object.

A training layer is structured as followed:

• TrainData: Data to be used to train the learner.

• Lrner: Includes a learning function and the package implementing the function.

• Model: The result of training the learner on the training data.

• VarSel: Includes a variable selection function and the package implementing the function.

A training layer can train its learner on its training data and store the resulting model. See the public
function Layer$train() below.

A training layer can make predictions for a new layer passed as argument to its predict function.
See the public function Layer$predict() below.

Super class

fuseMLR::HashTable -> TrainLayer

TrainLayer 57

Methods

Public methods:
• TrainLayer$new()

• TrainLayer$print()

• TrainLayer$getTraining()

• TrainLayer$getTargetObj()

• TrainLayer$train()

• TrainLayer$varSelection()

• TrainLayer$predict()

• TrainLayer$getTrainData()

• TrainLayer$getTargetValues()

• TrainLayer$getIndIDs()

• TrainLayer$getTestData()

• TrainLayer$getLrner()

• TrainLayer$getVarSel()

• TrainLayer$getModel()

• TrainLayer$checkLrnerExist()

• TrainLayer$checkModelExist()

• TrainLayer$checkVarSelExist()

• TrainLayer$checkTrainDataExist()

• TrainLayer$summary()

Method new(): constructor

Usage:
TrainLayer$new(id, training)

Arguments:
id character

Training layer id.
training Training

Method print(): Printer

Usage:
TrainLayer$print(...)

Arguments:
... any

Method getTraining(): Getter of the current training object.

Usage:
TrainLayer$getTraining()

Returns: The current training object is returned.

Method getTargetObj(): Getter of the target object.

58 TrainLayer

Usage:
TrainLayer$getTargetObj()

Method train(): Trains the current layer.

Usage:
TrainLayer$train(ind_subset = NULL, use_var_sel = FALSE, verbose = TRUE)

Arguments:

ind_subset vector
ID subset of individuals to be used for training.

use_var_sel boolean
If TRUE, variable selection is performed before training.

verbose boolean
Warning messages will be displayed if set to TRUE.

Returns: The current layer is returned with the resulting model.

Method varSelection(): Variable selection on the current layer.

Usage:
TrainLayer$varSelection(ind_subset = NULL, verbose = TRUE)

Arguments:

ind_subset vector
ID subset of individuals to be used for variable selection.

verbose boolean
Warning messages will be displayed if set to TRUE.

Returns: The current layer is returned with the resulting model.

Method predict(): Predicts values for the new layer taking as argument.

Usage:
TrainLayer$predict(new_layer, use_var_sel, ind_subset = NULL)

Arguments:

new_layer TrainLayer

use_var_sel boolean
If TRUE, selected variables available at each layer are used.

ind_subset vector

Returns: A new PredictLayer object with the predicted data is returned.

Method getTrainData(): Getter of the training dataset stored on the current layer.

Usage:
TrainLayer$getTrainData()

Returns: The stored TrainData object is returned.

Method getTargetValues(): Getter of target values from the current layer.

TrainLayer 59

Usage:
TrainLayer$getTargetValues()

Returns: A data.frame containing individuals IDs and corresponding target values.

Method getIndIDs(): Getter of IDS from the current layer.

Usage:
TrainLayer$getIndIDs()

Returns: A data.frame containing individuals IDs values.

Method getTestData(): Getter of the new data.

Usage:
TrainLayer$getTestData()

Returns: The stored TestData object is returned.

Method getLrner(): Getter of the learner.

Usage:
TrainLayer$getLrner()

Returns: The stored Lrner object is returned.

Method getVarSel(): Getter of the variable selector.

Usage:
TrainLayer$getVarSel()

Returns: The stored VarSel object is returned.

Method getModel(): Getter of the model.

Usage:
TrainLayer$getModel()

Returns: The stored Model object is returned.

Method checkLrnerExist(): Check whether a learner has been already stored.

Usage:
TrainLayer$checkLrnerExist()

Returns: Boolean value

Method checkModelExist(): Check whether a model has been already stored.

Usage:
TrainLayer$checkModelExist()

Returns: Boolean value

Method checkVarSelExist(): Check whether a variable selection tool has been already stored.

Usage:
TrainLayer$checkVarSelExist()

Returns: Boolean value

60 TrainMetaLayer

Method checkTrainDataExist(): Check whether a training data has been already stored.

Usage:
TrainLayer$checkTrainDataExist()

Returns: Boolean value

Method summary(): Generate summary.

Usage:
TrainLayer$summary()

See Also

Training, Lrner, TrainData, TestData and Model

TrainMetaLayer TrainMetaLayer Class

Description

This class implement a meta meta layer. A TrainMetaLayer can only exist as unique element of a
Training object.

A layer is structured as followed:

• Lrner: It is set by the user to be trained on the meta training data.

• TrainData: It are modality-specific prediction data, automatically created by the internal cross
validation.

• Model: The meta model, result of training the learner on the training data, and therefore, not
to be set by the user.

• TestData: The meta new data to be predicted, consisting in predictions obtained from each
layer.

A meta layer can train its meta learner on the meta training data and store the resulting meta model.
The meta layer can predict values given a new meta layer.

Super class

fuseMLR::HashTable -> TrainMetaLayer

Methods

Public methods:
• TrainMetaLayer$new()

• TrainMetaLayer$print()

• TrainMetaLayer$getTraining()

• TrainMetaLayer$getTargetObj()

• TrainMetaLayer$train()

TrainMetaLayer 61

• TrainMetaLayer$predict()

• TrainMetaLayer$impute()

• TrainMetaLayer$getTrainData()

• TrainMetaLayer$getLrner()

• TrainMetaLayer$getModel()

• TrainMetaLayer$openAccess()

• TrainMetaLayer$closeAccess()

• TrainMetaLayer$getAccess()

• TrainMetaLayer$setTrainData()

• TrainMetaLayer$checkLrnerExist()

• TrainMetaLayer$checkModelExist()

• TrainMetaLayer$checkTrainDataExist()

• TrainMetaLayer$set2NotTrained()

• TrainMetaLayer$summary()

Method new(): constructor

Usage:
TrainMetaLayer$new(id, training)

Arguments:
id character

Id of training meta-layer.
training Training

Method print(): Printer

Usage:
TrainMetaLayer$print(...)

Arguments:
... any

Method getTraining(): Getter of the current training object.

Usage:
TrainMetaLayer$getTraining()

Returns: The current training object is returned.

Method getTargetObj(): Getter of the target object.

Usage:
TrainMetaLayer$getTargetObj()

Method train(): Trains the current layer.

Usage:
TrainMetaLayer$train(ind_subset = NULL, verbose = TRUE)

Arguments:

62 TrainMetaLayer

ind_subset vector
ID subset of individuals to be used for training.

verbose boolean
Warning messages will be displayed if set to TRUE.

Returns: The current layer is returned with the resulting model.

Method predict(): Predicts values for the new layer taking as argument.

Usage:
TrainMetaLayer$predict(new_layer, ind_subset = NULL)

Arguments:

new_layer TrainLayer
A trained TrainLayer object.

ind_subset vector
Index subset.

Returns: A new object with the predicted values is returned.

Method impute(): Imputes missing values in modality-specific predictions. Only mode and
median based imputations are actually supported.

Usage:
TrainMetaLayer$impute(impute_fct = NULL, impute_param = NULL)

Arguments:

impute_fct character
An imputation function to use instead of median or mode imputation. This parameter is
actually not used. This corresponds to median or mode based imputation.

impute_param list
The list of parameters to call the imputation function. Not yet implemented!

Returns: A new object with the predicted values is returned.

Method getTrainData(): Getter of the training dataset stored on the current layer.

Usage:
TrainMetaLayer$getTrainData()

Returns: The stored TrainData object is returned.

Method getLrner(): Getter of the learner.

Usage:
TrainMetaLayer$getLrner()

Returns: The stored Lrner object is returned.

Method getModel(): Getter of the model.

Usage:
TrainMetaLayer$getModel()

Returns: The stored Model object is returned.

TrainMetaLayer 63

Method openAccess(): Open access to the meta layer. A meta learner is only modifiable if the
access is opened.

Usage:
TrainMetaLayer$openAccess()

Method closeAccess(): Close access to the meta layer to avoid accidental modification.
Usage:
TrainMetaLayer$closeAccess()

Method getAccess(): Getter of the current access to the meta layer.
Usage:
TrainMetaLayer$getAccess()

Method setTrainData(): Create and set an TrainData object to the current meta learner.
Usage:
TrainMetaLayer$setTrainData(id, ind_col, data_frame)

Arguments:
id character

ID of the TrainData object to be instanciated.
ind_col character

Name of individual column IDs.
data_frame data.frame

data.frame of layer specific predictions.

Method checkLrnerExist(): Check whether a training data has been already stored.
Usage:
TrainMetaLayer$checkLrnerExist()

Returns: Boolean value

Method checkModelExist(): Check whether a model has been already stored.
Usage:
TrainMetaLayer$checkModelExist()

Returns: Boolean value

Method checkTrainDataExist(): Check whether a training data has been already stored.
Usage:
TrainMetaLayer$checkTrainDataExist()

Returns: Boolean value

Method set2NotTrained(): Only usefull to reset status FALSE after cross validation.
Usage:
TrainMetaLayer$set2NotTrained()

Method summary(): Generate summary.
Usage:
TrainMetaLayer$summary()

64 VarSel

upsetplot upsetplot

Description

An upset plot of overlapping individuals.

Usage

upsetplot(object, ...)

Arguments

object Training or Testing
Training or testing object for each the upset plot will be created.

... any
Further arguments to be passed to the upset function from package UpSetR.

VarSel Varsel Class

Description

This class implements a learner. A VarSel object can only exist as a component of a TrainLayer or
a TrainMetaLayer object.

Methods

Public methods:
• VarSel$new()

• VarSel$print()

• VarSel$summary()

• VarSel$interface()

• VarSel$varSelection()

• VarSel$getTrainLayer()

• VarSel$getId()

• VarSel$getPackage()

• VarSel$getVarSubSet()

• VarSel$getParamInterface()

• VarSel$getNaAction()

• VarSel$getExtractVar()

Method new(): Variable selection parameter list.
Learner ID.

VarSel 65

Usage:
VarSel$new(
id,
package = NULL,
varsel_fct,
varsel_param,
train_layer,
na_action = "na.rm"

)

Arguments:

id character
Package that implements the variable selection function. If NULL, the variable selection
function is called from the current environment.

package character
Variable selection function name. Note: Variable selection functions, except Boruta, must
return a vector of selected variables.

varsel_fct character
Variable selection parameters.

varsel_param list
Layer on which the learner is stored.

train_layer TrainLayer
The training layer where to store the learner.

na_action character
Handling of missing values in meta-data. Set to "na.keep" to keep missing values, "na.rm"
to remove individuals with missing values or "na.impute" (only applicable on meta-data) to
impute missing values in meta-data. Only median and mode based imputations are actually
handled. With the "na.keep" option, ensure that the provided learner can handle missing
values. If TRUE, the individuals with missing predictor values will be removed from the
training dataset.

Method print(): Printer

Usage:
VarSel$print(...)

Arguments:

... any

Method summary(): Summary

Usage:
VarSel$summary(...)

Arguments:

... any

Method interface(): Learner and prediction parameter interface. Use this function to provide
how the following parameters are named in the learning function (lrn_fct) you provided when
creating the learner, or in the predicting function.

66 VarSel

Usage:
VarSel$interface(
x = "x",
y = "y",
object = "object",
data = "data",
extract_var_fct = NULL

)

Arguments:

x string
Name of the argument to pass the matrix of independent variables in the original learning
function.

y string
Name of the argument to pass the response variable in the original learning function.

object string
Name of the argument to pass the model in the original predicting function.

data character
Name of the argument to pass new data in the original predicting function.

extract_var_fct character or function
If the variable selection function that is called does not return a vector, then use this argu-
ment to specify a (or a name of a) function that can be used to extract vector of selected
variables. Default value is NULL, if selected variables are in a vector.

Method varSelection(): Tains the current learner (from class Lrner) on the current training
data (from class TrainData).

Usage:
VarSel$varSelection(ind_subset = NULL)

Arguments:

ind_subset vector
Individual ID subset on which the training will be performed.

Returns: The resulting model, from class Model, is returned.

Method getTrainLayer(): The current layer is returned.

Usage:
VarSel$getTrainLayer()

Returns: TrainLayer object.

Method getId(): Getter of the current learner ID.

Usage:
VarSel$getId()

Returns: The current learner ID.

Method getPackage(): Getter of the variable selection package implementing the variable
selection function.

varSelection 67

Usage:
VarSel$getPackage()

Returns: The name of the package implementing the variable selection function.

Method getVarSubSet(): Getter of the list of selected variables.

Usage:
VarSel$getVarSubSet()

Returns: List of selected variables..

Method getParamInterface(): The current parameter interface is returned.

Usage:
VarSel$getParamInterface()

Returns: A data.frame of interface.

Method getNaAction(): The current layer is returned.

Usage:
VarSel$getNaAction()

Method getExtractVar(): The function to extract selected variables is returned.

Usage:
VarSel$getExtractVar()

Returns: A data.frame of interface.

varSelection varSelection

Description

Variable selection on the training object passed as argument.

Usage

varSelection(training, ind_subset = NULL)

Arguments

training Training
Training object for storing the created layer.

ind_subset vector
ID subset of individuals to be used for variable selection.

Value

A data.frame with two columns: layer and selected variables.

68 weightedMeanLearner

References

Fouodo C.J.K, Bleskina M. and Szymczak (2024). fuseMLR: An R package for integrative predic-
tion modeling of multi-omics data, paper submitted.

weightedMeanLearner The weighted mean meta-learner

Description

Modality-specific learner are assessed and weighted based on their predictions. This function is
intended to be (internally) used as meta-learner in fuseMLR.

Usage

weightedMeanLearner(x, y, weighted = TRUE, perf = NULL, na_rm = FALSE)

Arguments

x data.frame
Modality-specific predictions. Each column of the data.frame content the pre-
dictions a specific learner.

y vector
True target values. If classification, either binary or two level factor variable.

weighted boolean
If TRUE, a weighted sum is computed. As default, weights are estimated based
on Brier Score for classification setting and mean squared error for regression.
Otherwise, use argument perf below to specify the function to use estimate
learner performance.

perf function
Function to compute layer-specific performance of learners. If NULL, the Brier
Score (classification) or a mean squared error (regression) is used by default as
performance measure. Otherwise, the performance function must accept two
parameters: observed (observed values) and predicted (predicted values).

na_rm boolean
Should missing values be removed when computing the weights?

Value

Object of class weightedMeanLearner with the vector of estimated weights pro layer.

weightedMeanLearner 69

Examples

set.seed(20240624L)
x = data.frame(x1 = runif(n = 50L, min = 0, max = 1),

x2 = runif(n = 50L, min = 0, max = 1))
y = sample(x = 0L:1L, size = 50L, replace = TRUE)
my_model = weightedMeanLearner(x = x, y = y)

Index

∗ datasets
multi_omics, 27

bestLayerLearner, 3, 13, 28

cobra, 4, 13
createCobraPred, 5
createDif, 6
createLoss, 6
createTesting, 7
createTestLayer, 7
createTraining, 8, 18
createTrainLayer, 8, 9, 14, 18, 19
createTrainMetaLayer, 8, 11, 11, 18, 19
createWeights, 14

Data, 14, 14
data.frame, 21

extractData, 17, 19
extractModel, 18, 19

fusemlr, 8, 11, 14, 18
fuseMLR::Data, 31, 39, 41, 48
fuseMLR::HashTable, 33, 34, 36, 42, 44, 46,

50, 56, 60

HashTable, 20

Lrner, 22, 22, 24, 36, 40, 45, 49, 50, 56, 59,
60, 62, 66

Model, 24, 25, 25, 36, 40, 45, 49, 50, 56, 59,
60, 62, 66

multi_omics, 27

predict.bestLayerLearner, 28
predict.cobra, 29
predict.Training, 30
predict.weightedMeanLearner, 30
PredictData, 31, 31, 33–37

Predicting, 33, 34, 44, 56
PredictLayer, 31–34, 34, 58
PredictMetaLayer, 31, 33, 34, 36, 36

summary.Testing, 38
summary.Training, 38

Target, 39, 39
TestData, 7, 14, 17, 25, 27, 32, 34, 36, 40, 41,

41, 44–47, 49, 52, 59, 60
Testing, 7, 30, 38, 42, 56
TestLayer, 7, 41, 42, 44, 44, 49
TestMetaLayer, 41–43, 46, 46
TrainData, 14, 17, 24, 32, 36, 42, 45, 48, 48,

50, 56, 58, 60, 62, 63, 66
Training, 8, 9, 11, 13, 18, 20, 36, 38–40, 45,

46, 50, 52, 54, 56, 60
TrainLayer, 9, 20, 22, 24, 25, 34, 40, 44,

48–50, 54, 56, 56, 64, 66
TrainMetaLayer, 11, 22, 25, 48, 50, 54, 60,

60, 64

upsetplot, 64

VarSel, 56, 59, 64, 64
varSelection, 14, 67

weightedMeanLearner, 13, 31, 68

70

	bestLayerLearner
	cobra
	createCobraPred
	createDif
	createLoss
	createTesting
	createTestLayer
	createTraining
	createTrainLayer
	createTrainMetaLayer
	createWeights
	Data
	extractData
	extractModel
	fusemlr
	HashTable
	Lrner
	Model
	multi_omics
	predict.bestLayerLearner
	predict.cobra
	predict.Training
	predict.weightedMeanLearner
	PredictData
	Predicting
	PredictLayer
	PredictMetaLayer
	summary.Testing
	summary.Training
	Target
	TestData
	Testing
	TestLayer
	TestMetaLayer
	TrainData
	Training
	TrainLayer
	TrainMetaLayer
	upsetplot
	VarSel
	varSelection
	weightedMeanLearner
	Index

