Package: ranger 0.17.0

Marvin N. Wright

ranger: A Fast Implementation of Random Forests

A fast implementation of Random Forests, particularly suited for high dimensional data. Ensembles of classification, regression, survival and probability prediction trees are supported. Data from genome-wide association studies can be analyzed efficiently. In addition to data frames, datasets of class 'gwaa.data' (R package 'GenABEL') and 'dgCMatrix' (R package 'Matrix') can be directly analyzed.

Authors:Marvin N. Wright [aut, cre], Stefan Wager [ctb], Philipp Probst [ctb]

ranger_0.17.0.tar.gz
ranger_0.17.0.zip(r-4.5)ranger_0.17.0.zip(r-4.4)ranger_0.17.0.zip(r-4.3)
ranger_0.17.0.tgz(r-4.4-x86_64)ranger_0.17.0.tgz(r-4.4-arm64)ranger_0.17.0.tgz(r-4.3-x86_64)ranger_0.17.0.tgz(r-4.3-arm64)
ranger_0.17.0.tar.gz(r-4.5-noble)ranger_0.17.0.tar.gz(r-4.4-noble)
ranger_0.17.0.tgz(r-4.4-emscripten)ranger_0.17.0.tgz(r-4.3-emscripten)
ranger.pdf |ranger.html
ranger/json (API)
NEWS

# Install 'ranger' in R:
install.packages('ranger', repos = c('https://imbs-hl.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/imbs-hl/ranger/issues

Uses libs:
  • c++– GNU Standard C++ Library v3

On CRAN:

16.36 score 776 stars 172 packages 7.9k scripts 57k downloads 91 mentions 11 exports 4 dependencies

Last updated 4 days agofrom:af66626cbe. Checks:OK: 9. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 08 2024
R-4.5-win-x86_64OKNov 08 2024
R-4.5-linux-x86_64OKNov 08 2024
R-4.4-win-x86_64OKNov 08 2024
R-4.4-mac-x86_64OKNov 08 2024
R-4.4-mac-aarch64OKNov 08 2024
R-4.3-win-x86_64OKNov 08 2024
R-4.3-mac-x86_64OKNov 08 2024
R-4.3-mac-aarch64OKNov 08 2024

Exports:csrfdeforestgetTerminalNodeIDsholdoutRFhshrinkimportanceimportance_pvaluespredictionsrangertimepointstreeInfo

Dependencies:latticeMatrixRcppRcppEigen

Readme and manuals

Help Manual

Help pageTopics
Case-specific random forests.csrf
Deforesting a random forestdeforest deforest.ranger
Get terminal node IDs (deprecated)getTerminalNodeIDs
Hold-out random forestsholdoutRF
Hierarchical shrinkagehshrink
ranger variable importance p-valuesimportance_pvalues
ranger variable importanceimportance importance.ranger
Parse formulaparse.formula
Ranger predictionpredict.ranger
Ranger predictionpredict.ranger.forest
Ranger predictionspredictions.ranger
Ranger predictionspredictions predictions.ranger.prediction
Print deforested ranger summaryprint.deforest.ranger
Print Rangerprint.ranger
Print Ranger forestprint.ranger.forest
Print Ranger predictionprint.ranger.prediction
Rangerranger
Ranger timepointstimepoints timepoints.ranger
Ranger timepointstimepoints.ranger.prediction
Tree information in human readable formattreeInfo